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Aimen Technology Centre, Porriño, Spain;

ABSTRACT
We present an embedded imaging approach based on low cost sensors that span a long spectral range in the infrared. A
system has been implemented with 12 apertures that combine unique uncooled FPAs in the mid infrared domain -2 to
5 microns wavelength- with very low cost microbolometers in the thermal infrared -7 to 14 microns wavelength-. Both
FPA technologies are uncooled and low cost, manufactured as monolithic devices. The system is made of two modules,
one LWIR, other MWIR. Each module has a system-on-chip GPU/ARM board that carries out all the image processing
required for image reconstruction. This includes the calibration of the system, the registration of the images acquired with
the many apertures, and the reconstruction of the super resolved image. Besides, the board performs all the operations
and transformations required for noise correction. The output of each of the modules is a video stream at 30 frames per
second. Each frame is a super resolved image with a resolution 2.5x compared to the images acquired by the FPAs used.
Furthermore, the modules may be integrated and the acquired images combined in a single one in the embedded processing
boards. Moreover, the boards may also combine and fuse this output with a visible range video stream. The use of low cost
FPAs facilitates the deployment in a broad range of applications that an benefit from imaging in the infrared, particularly
in the MWIR range in which existing commercial cameras based on hybrid technology are very expensive. The system is
being tested in different applications, including surveillance in variable lighting conditions and monitoring in firefighting
scenarios.
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1. INTRODUCTION
Thermal imaging has been growing fast and it is playing an important role in a wide range of civil applications thanks to
the reduction of costs and evolution of the uncooled technology. Microbolometers are a mature technology for the long-
wavelength infrared (LWIR) range from 7 to 14µm. The microbolometer market offers from cheap and miniaturized focal
plane arrays (FPAs) with reduced resolution 80 × 80, to the most advanced ones with resolutions up to 1024 × 768. In
the mid-wavelength infrared (MWIR) range from 2 to 5µm, there is a lack of uncooled detectors, with the low resolution
PbSe imagers1 (32×32 and 128×128) the only solution available in the market to the best of the author’s knowledge. The
lenses play a major role on the price and weight of the thermal cameras. The manufacturing costs are reducing, but there
is still a tradeoff cost/performance that has not yet open the way of the uncooled IR technology to consumer applications.

The general aim of multi-aperture imaging design is the substitution of a single lens aperture by an array of lenses
with shorter focal length,2 reducing the requirements of objective lens (cheaper optics), allowing the capture of depth
information, achieving better color separation (less crosstalk) and providing scalable resolution. A multi-aperture array
produces a set of low-resolution images that may be computationally combined to produce a single high-resolution image
with super-resolution algorithms.

Here, we describe the embedded implementation of a super-resolution method for a multi-aperture camera array in a
broad IR range using low cost and low resolution FPAs. The super-resolution techniques is based on maximum a posteriori
(MAP) approach using a regularized image prior. We achieve super-resolution at video rate for the LWIR and MWIR range
using a camera array with six apertures in each band. Combining six low resolution images in the LWIR of 160 × 120
pixels, the embedded system is able to deliver higher resolution 400× 300 images at video rate. In the MWIR, the system
increase the native resolution of the PbSe FPAs from 32 × 32 to 76 × 76 pixels. Besides, the computational imaging
technique allows refocusing of the scene.



Figure 1: Broad band multi-aperture snapshot camera in the IR (0.4-14µm). Left: MWIR module, centre Visible and NIR,
right LWIR.

Table 1: Coarse bands
Coarse band Wavelength (µm) Sensor technology
VIS/NIR 0.4 to 1.0 CMOS
MWIR 2.0 to 5.0 PbSe
LWIR 7.0 to 14.0 MEMS microbolometer

2. BROAD BAND MULTI-APERTURE CAMERA
We have designed and assembled a broad band multi-spectral camera for the IR range (0.4-14µm). The camera combines
the only three IR technologies that are monolithically compatible with Si-CMOS: PbSe detectors for the MWIR range3,1

CMOS-based microbolometers4 for the LWIR, and a standard CMOS detector for the visible and NIR (Table-1). The
camera has three main modules: a multi-aperture (MA) MWIR array composed of six low resolution (32 × 32) PbSe
detectors, a MA LWIR array composed of six QQVGA (160 × 120) microbolometers, and a CMOS VIS/NIR module
with one aperture and a beamsplitter (each band with a resolution of 1088 × 2048). Each coarse band module has a
system-on-chip ARM/GPU board (Jetson TX1) for synchronized acquisition, pre-processing, image reconstruction based
on computational imaging and band fusion. Each module can work as a standalone unit, providing a control interface and
video stream in standard format, or be synchronized to provide a unique fused video stream. The interfaces are based on
USB3 for the VIS/NIR and LWIR module and USB2 for MWIR (see Figure 2 ). The camera provides multispectral video
stream embedded in a mosaic in standard video format at 25 frames per second (Fps). One of the key features of the SoC
board is the shared memory between the CPU and GPU, which makes it an efficient processor for streaming applications
with low latency.

Figure 2: Communication scheme between the broad band modules (left). Single sensor module interface (right).

3. SUPER-RESOLUTION
Super-resolution is a procedure that combines noisy and low resolution images to provide a super-resolved image with
higher spatial resolution and improved image quality. In this section describe the implementation of the embedded super-
resolution approach for the LWIR and MWIR ranges providing video-rate. The method combines six low resolution images
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simultaneously acquired with the camera array to generate a super-resolved image with higher resolution (up to 2.5×) with
respect to the native resolution of the FPAs.

3.1 System model
Consider a high-resolution image scene x ∈ RN×1 in lexicographical order, and a set of K low resolution images yi ∈
RM×1 with i ∈ [1,K]. The warping, blurring and downsampling of the scene is model by a sparse matrix W i ∈ RM×N .
The simplest forward model for one low resolution image generation is

yi = W ix+ ei, (1)

where ei is assumed to be zero-mean Gaussian Noise. Concatenating all the low resolution images in a vector y =
[yT

1 , . . . ,y
T
K ]T, and defining the system matrix as

W =


W 1

W 2

...
WK

 , (2)

we obtain the image retrieval model
y = Wx+ e. (3)

The objective of the super-resolution is to recover x from y without knowing W and e. Several approaches have been
proposed to simultaneously recover y and W .5 To simplify the reconstruction, however, the problem is usually split in
two steps: first construct the warping matrix W , and second recover the high resolution image x, which is the strategy
we follow here. The warping matrces W i are parametrized by few values using motion models with different degrees of
freedom and point spread functions (PSF).

We define the high resolution image plane, as a plane parallel to one of the low resolution images taken as reference,
at a distance d, Figure 3. Thus, the geometric relationship between the location of a pixel in the low resolution (LR) image
u, and its location in the high resolution (HR) image û, may be written in homogeneous coordinates as

û = Hu, (4)

where H is the homography matrix that relates both image planes. The transformation matrices Hi with i ∈ [1, . . . ,K],
for each of the LR images are obtained from a calibration and registration procedure. Assumning an isotropic Gaussian
PSF each element of the ith warping matrix is defined as

W i
n,m = exp

(
−||(vn − ûi

m)||22
2σ2

psf

)
, (5)

with vn the location of the nth pixel in the HR image, and ûi
m the location of the mth LR pixel from the ith image when

projected in the HR image.

3.2 Image registration
The warping matrices W i are constructed from the transformation matrices Hi obtained from a registration procedure.
Registration in thermal infrared is challenging due to the lack of definition of corners and other features like texture.
Methods such as Shift or Surf usually fail. Simple motion models between images where the registration only allows
translations and rotations are preferred5.6

To simplify the registration problem and reduce the degrees of freedom of the motion model, we exploit the geometry
of the camera array. We use a full metric calibration to obtain the relative position and orientation of each camera with
respect to the reference camera frame (Figure 3). From the intrinsic and extrinsic parameters we compute the homogra-
phies Hi = H1(d)Hi that transform each LR image to the super-resolved reference image plane placed at a distance
d. H1(d) is the homography matrix that transform the image plane of the reference camera to the super-resolved im-
age plane, and Hi with i ∈ [2,K] the homography matrices between the other cameras and reference coordinate frame.



Figure 3: Camera array reference plane and super-resolved image plane. Each LR image is projected onto the super-
resolved image plane using the registration information (Ri,Ti) and the distance between the two planes d. The informa-
tion is embedded in each homography matrix Hi.

The homographies Hi are computed from the intrinsic and extrinsic parameters estimated from the calibration method
Hi = f(camera matrix,Ri, ti).

This approach allow us to focus the HR image at an arbitrary distance varying d. It is usually more interesting to select
the region in the image we want to be focused. For that, we follow a different strategy similar to.7 We first re-project all
the LR images to a reference plane at distance d0 in the far field, removing in this way all the effects relatives to rotation
and translations of the cameras. Assuming that the images are now aligned on a plane, we apply a subpixel-registration
method on the region of interest, allowing only vertical and horizontal shifts between the images. The homographies are
given by Hi = HoffsetiH1(d0)Hi, with H(offseti) an homography matrix that applies the estimated shifts in the vertical
and horizontal direction to the projected LR image i.

The full metric calibration procedure involves the acquisition of many images using a calibration pattern illuminated
with a thermal heater placed at different distances and orientations. For the subpixel registration based on correlations we
use the efficient algorithm in.8

3.3 Maximum-a-posteriori image reconstruction
To reconstruct the super-resolved image we use a maximum a posteriori (MAP) model

x̂ = argmin
{
||y −Wx||22 + λU(x)

}
. (6)

The first term is a data fidelity item between the observed LR images and the HR image, while U(x) is an image prior that
promote smooth solutions, with a control regularization parameter λ which represents a trade-off between data fidelity and
smoothness. We use a Huber prior widely extended in super-resolution approaches, which benefits from penalizing edges
less severely than other Gaussian or Laplacians priors9.10 Solving x can be a time-consuming process if the W matrix
is large or have many non-zero elements. Iterative methods are available to obtain a good estimate of x. We use here an
efficient gradient descent algorithm for large system, the Scaled Conjugate Gradient (SCG) in.11



Figure 4: CPU/GPU software architecture of a MA camera module.

3.4 Implementation
To achieve super-resolution at video rate we have implemented the reconstruction algorithm exploiting the powerful GPU of
the embedded board. The firmware architecture is depicted in Figure 4. The CPU is dedicated to synchronized acquisition,
image pre-processing (e.g. non-uniformity correction and photometric correction) and control interface, while the GPU is
exclusively devoted to the super-resolution. The SCG requires the computation of matrix-vector multiplications at each
iteration which represents the most computational demanding operation. The complexity of matrix-vector multiplication is
of orderO(N2) withN the total number of pixels in the super-resolved image. Since W is a sparse matrix, the complexity
can be reduced significantly using efficient sparse data schemes, with the complexity depending on the number of non-
zero entries. The sparsity level of the system matrix directly depend on the assumptions made on the generative model
and the registration. The matrix vector multiplication has been implemented in CUDA. We exploit the shared memory
between CPU and GPU of the Jetson board to reduce memory transfer between host and device. Optimization of the sparse
matrix vector product (SpMV) is challenging because of the irregular computation of large spare operations. The effort to
accelerate the computation of SpMV is focused on the design of appropriate data formats to store the spare matrix, since
the performance of the SpMV is directly related to that. From all the sparse data schemes we have tested, ELLPACK-R12

provides the best performance.

ELLPACK-R is a variant of the ELLPACK format. The scheme uses three array; a float array A to save the non-zero
entires, one integer array j to save the columns of every entry, and another integer array r to store the actual length of each
row. A and j of dimension at least KM ×MaxEntreisByRows, and the vector r of dimension KM . We refer the reader
to12 for the GPU implementation details. The scheme takes advantages of:

• Coalesced memory access on the GPU.

• Non-synchronized execution between different blocks of threads.

• The reduction of the waiting time or unbalance between threads of one warp.

• Homogeneous computing within the threads in the warps.

4. RESULTS
We tested the multispectral broad IR camera in the field for traffic monitoring and during a fire fighting drill. Figure 5 and 6
show reconstruction results using the LWIR module on a traffic scene. We show the six low resolution images (160× 120)
acquiried with the camera array (top), a interpolated LR image (bottom-left), and the super-resolved image (bottom-right).
The low resolution images have good contrast but are noisy, due to the non-uniformities of the FPA. The super-resolved
image (400 × 300) shows better image quality, mitigating the noise and providing much better definition than the median
image.

The processing time for super-resolved an image is ∼ 42 milliseconds in the embedded system with the CPU/GPU
implementation, achieving a super-resolved video stream of 24 frames per second.



Figure 5: LWIR super-resolution results. Top: six low resolution images 160× 120. Bottom: LR interpolated image (left)
and super-resolved (right) with increased resolution 400× 300.

Figure 6: LWIR super-resolution results. Top: six low resolution images 160× 120. Bottom: LR interpolated image (left)
and super-resolved (right) with increased resolution 400× 300.

In Figure 7, we show reconstruction results using the MWIR module with an image taken during a fire-fighting drill.
The low resolution MWIR images (32×32) show a good SNR. The super-resolved images provides much better definition
than the interpolated median image.

5. CONCLUSION
We have described the embedded implementation of a super-resolution approach for a multi-aperture camera covering a
broad band IR spectrum band. The algorithms is implemented in CUDA, and runs in a powerful embedded processor
integrated in the camera. The embedded system is able to provide super-resolution in LWIR and MWIR at video rate
increasing the native resolution of the low cost FPAs up to a factor of x2.5.
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Figure 7: MWIR super-resolution results. Top: six low resolution images 32 × 32. Bottom: interpolated median image
(left) and super-resolved (right) with increased resolution 76× 76.
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